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Secondary flow in a curved tube 

By D. GREENSPAN 
Computer Sciences Department, University of Wisconsin- 

(Received I0 July 1972)  

The work of Dean and that of McConalogue & Srivastava on the steady motion 
of an incompressible fluid through a curved tube of circular cross-section is 
extended through the entire range of Reynolds numbers for which the flow is 
laminar. The coupled nonlinear system of partial differential equations which 
defhes the motion is solved numerically by finite differences. Computer cal- 
culations are described and physical implications are discussed. 

1. Introduction 
The flow of a fluid in a curved tube has been of broad interest both experi- 

mentally (see, e.g. Eustice 1911; Taylor 1929) and theoretically (see, e.g. Dean 
1927, 1928; McConalogue 1970; McConalogue & Srivastava 1968). I n  this paper 
we shall study, in particular, the steady secondary flow of an incompressible fluid 
through a pipe of circular cross-section which is coiled in a circle. Our approach 
will be numerical and will be applied to the particular model studied qualitatively 
by Dean (1927) and numerically by McConalogue & Srivastava (1968). The 
method to be used will be a finite-difference technique (Greenspan 1968,1969) and 
will be both simpler and more comprehensive than that of McConalogue & 
Srivastava. 

Mathematically, the problem to be considered is formulated as follows. Con- 
sider a pipe of circular cross-section, coiled in the form of a circle. As shown in 
figure 1, let the axis of the circle in which the pipe is coiled be 0 Y and let C be the 
centre of the section of the pipe formed by a plane through 0 Y which makes an 
angle 6 with a fixed axial plane. Let OC be of length L, and let the radius of the 
cross-section be a. The co-ordinates of any point P of the cross-section are de- 
noted by orthogonal co-ordinates (r’, a, 6), where r’ is the distance CP and a is the 
angle C P  makes with OC. Let the velocity components at P be ( U ,  V ,  W ) ,  where 
U is in the direction CP, V is perpendicular to 7;s and in the plane of the cross- 
section, and W is perpendicular to this plane. The motion of the fluid is assumed 
to be due to a fall in pressure in the direction of increasing 8. It is assumed also 
that a/L is relatively small (McConalogue & Srivastava 1968); that U ,  T‘ and W 
are independent of 0; and that the motion is steady. Setting 

T’U = affaa, v = -aj/arI, (1.1) 

D = 4R(2a/L)t, (1.2) 

where f, the stream function of the secondary flow, is a function only of r’ and a; 
defining the constant D by 
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FIGURE 1. Co-ordinate system 

where R is a given Reynolds number; and introducing the non-dimensionsional 
variables .f = vq5, W = w(v2L/2a3)+, r’ = ar, 

where v is the kinematic viscosity, yields the following equations of motion 
(McConalogue & Srivastava 1968): 

(1.3) 

in which 

The boundary constraints a t  r = 1 are 

w = q5 = a$/& = 0. 

The problem, then, is to solve the coupled nonlinear partial differential equations 
(1.4) and (1.5) subject to boundary conditions (1.7). 

Physically, the experiments of Eustice (191 I)  and Taylor (1929) have shown 
that, for curved tubes, flow can be laminar for much greater Reynolds numbers 
than is the case of a straight tube, and since Taylor (1929) showed that the 
critical Reynolds number rose to about 5000 for the case L/a = 31.9, interest 
has centred on the following range of D:  

0 < D < 5000. 

Thus far, convergent results have been obtained only by Dean (1927) for 
0 6 D 6 96 and by McConalogue & Srivastava (1968) for 96 < D < 605.72. 

(1.8) 
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In  our development of a numerical method which will be convergent for the 
entire range (1-8), we shall be motivated by the powerful difference methods and 
supporting theory which exist for second-order elliptic equations ( Greenspan 
1968). For this reason, let us rewrite (1.4) and (1.5) as the following system of 

a 2 4  1 a24 1 a+ -+--+ - -= -  Q 
ar2 r2 aa2 r ar 

second-order equations: 

(1.10) 

a2Q i a2a i a4asz aw C O S ~  aw 
ar2 r2 aa2 r ar aa 
-+--++- [ -- +(1-2):]= w(sinaarilE 

Observe that (1.9)-(1.11) are, in fact, valid only for r > 0. The singularity a t  
r = 0 is, nevertheless, not physical but geometric, and is due to recasting of the 
equations 

(1.9a) 
a24 a 2 4  -+- = -Q,  
ax2 ay2 

( 1.10 a) 

(1.11 a )  

into polar co-ordinates. 
However (1.9a)-( 1.11 a)  yield, readily, the symmetry relationships 

4 ( X , Y )  = -4(x, -Y),  (1.12) 

Y) = - Wx, -Y), (1.13) 

w(x, y) = w(x, -Y) ,  (1.14) 

which, in turn, will allow us to study our problem on the semicircle defined by 
0 6 r < 1, 0 6 a 6 7r. Indeed, from (1.12) and (1.13), one has immediately, in 
rectangular co-ordinates, that 

+(x, 0) = Q ( x ,  0) = 0. (1.15) 

2. Difference-equation approximations 
Fundamental to the method to be developed is the approximation of differen- 

tial equations (1.9)-( 1.11) and ( 1 . 1 0 ~ )  by difference equations which are associated 
with diagonally dominant, linear algebraic systems. This will be accomplished by 
using a combination of central-, forward- and backward-difference approxima- 
tions for derivatives as follows, in the same spirit as in Greenspan (1969). 

Consider &st r = 0 and ( 1 . 1 0 ~ ) .  In  rectangular co-ordinates, and for Ar > 0, 
let the five points ( O , O ) ,  (Ar, 0 ) ,  (0, Ar),  ( -  Ar, 0) and (0, -Ar)  be numbered 
0 , 1 , 2 , 3  and 4, respectively. Then, in the usual subscript notation (Greenspan 
1969) approximate the second-order derivative terms at (0,O) by 

(2.1) 
a2w a2w -~W,+W,+W~+W,+W, 

ax2 ay2 (W2 
-+-= 
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Next, set 

-={  aw (w0 - w,)/Ar 
ax (wl - wo)/Ar 

If one now defines the quantities A ,  B and C by 
A = -4-11 2 ‘I -MI, 
B = l+tlsl, 

c = l++\PI, 
then the difference approximation of (1.10a) which results is 

Aw, + w1 + Bw, + Cw, + w, = - (Ar)2D ( E  2 0, P 2 0 ) ,  
Awo+Cwl+Bw2+w3+w4 = -(Ar)2D ( E  2 0, /3 < 0) ,  
Awo+w,+w2+Cw3+Bw4 = -(Ar)2D (8 < 0, P 2 0) ,  
Awo+Cwl+w2+w3+Bw4 = -(Ar)2D ( E  < 0, /3 < 0). 

Consider, next, r > 0 and (1.9)-( 1.11). For given positive values of Ar and A a ,  
let the five polar points (r,  a),  (r + Ar, ct), ( r ,  ct + Aa), ( r  - Ar, a)  and ( r ,  a - ha) be 
numbered 0, 1,2 ,3  and 4, respectively. Let the second-order derivatives in 
(1.9)-(1.11) be approximated by 

(2.10) 

In  (1.9), set 

Then, in ( l . l O ) ,  use 

2Aa-#2+44 ,  (z)! -41-#3 (‘-z)l0= 2Aa 2Ar ’ 

Now, define y and 6 by 

and approximate awlact and awpr in (1.10) as follows: 
$1-43 = y, 2 A a - 4 2 + # 4  = 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

l- -={  aw (t~l-wO)/Ar (6 2 o), 
ar (wo - w3)/Ar (6 < 0). (2.18) 
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For ( l . l l ) ,  use (2.13), (2.14), (2.15) and, with w replacedby s1, (2.17) and (2.18). 
Finally, in (1.1 l),  approximate awlar and awlaa by 

(2.19) 

If one dehes  the quantities E ,  F ,  GJ H ,  I and J by 

then the respective difference approximations of (1.9)-( 1.11) which result are 

2 2 1 1 1 [ (Ar)2 r2(Aa)2 rA,] 'O'[w+&] " 
----_- 

1 $54 = - Qo, (2.20) +- 4 +-$5 +- 1 1 
r2(Aa)% a (Ar)2 ~ ~ ( h a ) ~  

(2.21) 

(2.22) 

i 
i 

EwO+FW~+GW~+HW~+.IW~ = -D (7 2 0, S 2 0) ,  
EwO+HW,+GW~+FW~+IW~ = -D (y  3 0, 6 < 0) ,  
EwO+Fw1+Iw2+Hw3+Gw4 = -D (y  < 0, 6 > 0) ,  
E w O + H W ~ + I W ~ + F W ~ + G W ~  = - D  (7 < 0, 6 < 0). 

EQo+PQl+Gs1Z,+HQ3+Is14 = J (7 2 0, S > 0) ,  
Es10+HS11+Gs12+Ps13+Is14 = J (y > 0, S < 0) ,  
EQo+FQl+Is12+Hs13+Gs14 = J (7 < 0, 6 2 0) ,  
EQo+HQl+Is12+Fs13+GQ, = J (7 < 0, 6 < 0). 

3. The numerical method 
As shown in figure 2, let R be the semicircular region defined by 

O < r < l ,  O < a < n  

and let S be the boundary of R. For finite positive grid sizes Ar and ha ,  where 
(Ar)-l and &~(Aa)-l are integers, construct and number in the usual way the 
interior polar grid points Rh and the boundary polar grid points 8,. 

In  general, we shall construct on Rh u 8, a triple sequence of discrete functions 

qw, p, p ,  . . ., (3.1) 

W'O), WQ, w(2), ..., ( 3 4  

Q(O), !m, Q@), . . ., (3.3) 

with the property that, for some integer k, and for given positive tolerances 

I$5(k), ''k+l)I < 8 1, (3-4) 

I < €2, (3.5) I W'k) - w(k+l) 

(3.6) 1 3  

€1, € 2  and €3, 

I Q ( k )  - Q(k+l) < 8 
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FIGURE 2 .  Grid system. 

uniformly on R, u S,L. Each of the discrete functions in sequences (3.1)-(3.3) will 
be called an outer iterate. For j = 1,2,  ..., each $0) will be a solution of (2.20), 
each w(j) will be a solution of (2.10) or (2.21), and each Q(j) will be a solution of 
(2.22). Numerical convergence to the tolerances (3.4)-(3.6) will yield the discrete 
approximate solutions qVk+1), w(k+l) and Q(k+l) for 9, w and Q, respectively. 

Specifically, the algorithm proceeds in the following fashion, with the origin 
being expressed in rectangular co-ordinates and all other points being expressed 
in polar co-ordinates. 

Step 1. Define $(O), w(O) and Q(O) arbitrarily on Rh U 8, except that $(O) = 0 on 
S,, w(0) = 0 at each point of S, for which r = 1, and Q(O) = 0 at each point of S, 
which is also a point of the X axis. 

Step 2. At each point ofs,, set 
qi = 0. (3.7) 

At each point of Rh for which r = 1 - Ar, set 

$( 1 - Ar, a )  = $$( 1 - 2Ar, a). (3.8) 

On the remaining points of R,, write down (2.20) with Qo replaced by Qdk).  Solve 
the linear algebraic system so generated by SOR (Greenspan 1968) with over- 
relaxation factor r6 and denote the solution by $(k+l). Then, define $(le+l) on 
R, U 8, by the smoothing formula 

$(k+l) = < l $ ( k ) + ( l - & ) p + l )  (0 6 t1 < I).  (3.9) 

Xtep 3. At each point of 8, for which r = 1, set w = 0. At the origin write down 
(2.10) with each $i replaced by the known value $lk+l) given by (3.9), with $, 
replaced by -& and with w, replaced by w2. On the remaining points of R,, 
write down (2.21) with $i replaced by $$k+l). On the remaining points of S,, write 
down (2.21) with $i replaced by q5ik+l), with $4 replaced by - $2 and w4 replaced 
by w2 between 0 and Pl, and with $2 replaced by -4, and w2 replaced by w4 
between 0 and Pa. 
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D 

10 
100 

250 

500 
1000 
2000 
5000 

€1 

10-6 
2 x 10-4 

2 x 10-3 

4 x 10-3 
5 x 10-3 
7 x 10-3 

10-2 

€2 

10-3 
5 x 10-3 

2 x 10-2 

4 x  10-2 
5 x 10-2 
8 x 10-2 
15 x 

€3 

10-4 
5 x 10-3 

4 x  10-2 

8 x 10-2 

3 x 10-1 
6 x 10-1 

17 x 

r+ 
1.5 
1.5 

1.5 

1.5 
1.5 
1.5 
1 *5 

r W  

1.8 
1.7 

1.8 on 
iteration 

then 
1 only, 

1.5 

1.5 
1.5 
1.5 
1-5 

rSL E l  6% 5, 
1.5 0.1 0-1 0.1 
1.5 0.1 0.1 0.1 

1.5 0.1 0-1 0-1 

1.5 0.1 0.1 0.1 
1.5 0-5 0-1 0.1 
1-3 0.5 0.1 0.1 
1.3 0.3 0.1 0.1 

Number 
outer itera- 
tions for 

conver- 
E4 gence 

0-1 8 
0.1 8 

0.1 9 

0.1 13 
0.5 21 
0.5 25 
0-7 25 

TABLE 1 

Solve the linear algebraic system generated above by SOR using r, as over- 
relaxation factor, and denote the solution by Z(k+l). Then, d e k e  ~ ( ~ f l )  on 
Rh u sh by (3.10) wfk+l) = gzw’k)+(1-g2)Z(k+l) (0 < g2 < 1). 

Step 4. At each point of 8, for which r = 1, set 

Q(k+Q(l,a) = - 2(Ar)-z@k+l)(l -Ar,a).  

Then d e h e  Q(k+l) on this set of points by 

(3.11) 

Step 5. At the points of sh not considered in step 4, which are all on the X axis, 
set Q = 0. At each point of Rh, write down (2.22) with ${ replaced by g5ik+l), with 
wi replaced by wlk+l), and with Q at each boundary point for which r = 1 deter- 
mined by (3.11). Solve the linear algebraic system so generated by SOR with 
over-relaxation factor rQ. Denote the solution by fi(k+l). Finally, define ack+l) on 
the set of points not included in step 4 by 

(3.12) 

Step 6. Do steps 2-5 fork = 0, 1,2,  ... . Terminate when (3.4)-(3.6) are satisfied. 
For a complete FORTRAN program of the above algorithm, see Schubert 

Q(k+l) = g 3 Q(k) f (1 - g4) a ( k + l )  (0 < E4 < 1). 

(1972). 

4. Examples and results 
A large variety of examples using the method of Q 3 were run on the UNIVAC 

1108 at the University of Wisconsin and a selection of convergent ones in which 
D = 10, loo, 250,500,1000,2000 and 5000 are summarized in table 1. Economic 
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FIGURE 3. Constant-+ curves for (a) D = 10, (b )  D = 100, (0 )  D = 500, 
(13) D = 2000, (e)  D = 5000. 

constraints restricted the grid sizes in each case to Ar = 0.1 and Aa = AT, and no 
case required more than three minutes of computing time. The input values for 
D = 10 were #(O) = w(O) = Q(O) = 0. The input values for any other D in table 1 
were the converged results obtained for the previous value of D .  The SOR toler- 
ances associated with #, w and were set at &e$, i = 1,2,3, respectively. Graphs 
of constant-# and constant-w curves for D = 10, 100, 500, 2000 and 5000 are 
given in figures 3 and 4. 

Most of the qualitative physical trends observed by McConalogue & Srivastava 
continue to develop so that, with increasing D, the axial-momentum peak moves 
well away from the origin, the secondary-flow velocity becomes more uniform in 
a large central region and there is a considerable reduction in the flux in the 
curved tube compared with that of the straight tube. The unexpected result is 
that the core of the constant-# curves exhibits a clockwise motion about the 



Secondary $ow in a curved tube 175 

22.5 

68.8 

FIGURE 4. Constant-w curves for (a) D = 10, (a) D = 100, 
( c )  D = 600, (d) D = 2000, (e) D = 5000. 

origin up to D = 500 and then, for D 2 500, reverses to one which is counter- 
clockwise. It is also of interest to note that, for D = 5000, the constant-w curves 
have developed several oscillatory portions near the origin, which would seem to 
presage the onset of turbulence. 

Quantitatively, almost nothing of a precise nature can be said in comparing the 
results of this paper and those of McConalogue & Srivastava. Of course one can 
note, for example, that our result Wmax = 22.5 for D = 100 corresponds well with 
their result Wmax = 23.4 for D = 96, or that our result = 6.7 for D = 500 is 
comparable to their result +,a, = 6.81 for D = 605.72. Unfortunately, their 
calculations and ours are for different sets of D values and linear interpolation 
cannot be applied to deduce valid comparisons. 
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